[image:]

Prepared by Randall Fadler
May 19, 2025

Mastering SQL Server: From Fundamentals to Performance Power
Part I: The Foundations
1. Introduction to SQL Server and Editions
2. Installation and Configuration Best Practices
3. SQL Server Management Studio (SSMS) Overview
4. Understanding Databases, Tables, and Indexes
5. Data Types and Constraints
Part II: T-SQL Essentials
6. Querying with SELECT, INSERT, UPDATE, DELETE
7. Joins, Subqueries, and Set Operators
8. Functions, Expressions, and CASE Logic
9. Stored Procedures, Views, and Triggers
10. Transactions and Error Handling
Part III: Advanced SQL Features
11. System-Versioned Temporal Tables
12. Partitioning Strategies and Implementation
13. Dynamic SQL and Execution Plans
14. SQL Server Sequences and Identity Columns
15. Change Data Capture vs. Change Tracking
Part IV: Performance and Optimization
16. Indexing Deep Dive: Clustered, Non-Clustered, and Columnstore
17. Execution Plans and Query Tuning
18. Statistics, Histograms, and Cardinality Estimation
19. Best Practices for Writing High-Performance Queries
20. Using DMVs and DMFs for Monitoring
Part V: Administration and Security
21. Backup, Restore, and Recovery Models
22. Security and Role-Based Access
23. Automating Jobs with SQL Server Agent
24. Database Maintenance Plans
25. High Availability and Disaster Recovery (HADR)
Part VI: Case Studies & Projects
26. Building a Performance Dashboard in T-SQL
27. Implementing a System-Versioned Table in Practice
28. Partitioning a Historical Sales Table
29. Building a Rust-Powered CLI for Querying SQL Server
30. Troubleshooting Real-World Query Bottlenecks

📖 Chapter 1: Introduction to SQL Server and Editions
What is SQL Server? Microsoft SQL Server is a relational database management system (RDBMS) designed to store, retrieve, and manage data efficiently. It powers everything from small desktop apps to massive enterprise systems with billions of records.
Why SQL Server?
· Mature and stable platform
· Rich T-SQL language support
· Strong integration with Microsoft tools (e.g., .NET, Azure)
· Advanced features like temporal tables, in-memory OLTP, and partitioning
Editions Overview
	Edition
	Best For
	Key Features

	Express
	Lightweight/local apps, learning
	Free, limited to 10 GB per DB, 1 GB RAM per instance

	Developer
	Development and testing
	Full Enterprise features, but not licensed for production

	Standard
	Small to medium production workloads
	Core RDBMS features, 128 GB RAM limit

	Enterprise
	Mission-critical enterprise systems
	Full feature set: Always On, compression, in-memory, etc.

	Azure SQL
	Cloud-native deployments
	Fully managed PaaS, built-in high availability

> ✨ Tip: SQL Server Developer Edition is perfect for learning and personal projects—it’s free and feature-complete.
Licensing Models
· Core-based licensing for larger systems
· Server + CAL (Client Access License) model for smaller environments
Next, we’ll flow into Chapter 2: Installation and Configuration Best Practices—where we can cover setup choices, tempdb optimization, and basic security hardening.

Chapter 2: Installation and Configuration Best Practices
Why This Matters: A well-configured SQL Server installation can mean the difference between “set it and forget it” and “why is this crawling at 2 a.m.?”
🔧 Pre-Installation Planning
· Hardware considerations: Prioritize fast disks (SSD or NVMe), ample memory, and multiple CPU cores.
· Capacity planning: Estimate current and future storage and workload demands.
· Windows configuration: Use a dedicated service account, disable unnecessary services, and ensure up-to-date security patches.
💿 Installing SQL Server
· Choose appropriate edition (see Chapter 1).
· Opt for custom installation to select features like:
· Database Engine Services
· SQL Server Agent
· Full-Text Search (if needed)
· Set collation appropriately (default is usually fine unless multilingual or legacy systems are involved).
⚙️ Post-Installation Configuration
· Set max server memory: Prevent SQL Server from hogging all available RAM.
· Configure tempdb:
· Use multiple data files (1 per core up to 8 is a good starting point).
· Place tempdb on fast storage.
· Enable Instant File Initialization (for faster file allocation during growth).
· Configure backup compression and default backup locations.
· Enable TCP/IP protocol via SQL Server Configuration Manager.
🛡️ Security Best Practices
· Use Windows Authentication where possible.
· Disable the sa account or rename it.
· Limit sysadmin role to essential accounts only.
· Regularly audit logins and permissions.
🧪 Optional Tools and Enhancements
· SQL Server Management Studio (SSMS) – your day-to-day GUI.
· SQL Server Data Tools (SSDT) – for database projects and deployments.
· SQLCMD – for scripting and automating installs.
· dbatools (PowerShell module) – for automation, migrations, and advanced configuration.
In Chapter 3, we’ll explore SQL Server Management Studio (SSMS) and how to navigate it efficiently—perfect for someone building tools like your Rust-powered CLI or optimizing SQL dev workflows.
Chapter 3: Navigating SQL Server Management Studio (SSMS)
What is SSMS? SQL Server Management Studio (SSMS) is Microsoft’s flagship GUI tool for managing, developing, and administrating SQL Server. Think of it as your command center for anything SQL-related—query writing, object exploration, performance tuning, and beyond.
🧭 Key Components of the Interface
· Object Explorer: View and manage databases, tables, views, stored procedures, and more. It’s your filesystem for SQL.
· Query Editor: Where you write and run T-SQL scripts. Includes syntax highlighting, IntelliSense, and execution history.
· Activity Monitor: Real-time dashboard for server performance—CPU, I/O, expensive queries, and blocking sessions.
· Registered Servers: Organize connections to different instances—perfect for managing dev, test, and prod environments.
> 💡 Pro Tip: You can split Object Explorer and Query Editor into separate windows or monitors—perfect for multitasking.
⚙️ Workflow Tips and Customizations
· Use keyboard shortcuts (F5 to execute, Ctrl+R to toggle Results pane).
· Drag column names from Object Explorer directly into your query window.
· Change Results to Text (Ctrl+T) for cleaner output formatting.
· Use Templates from the View menu to quickly generate common T-SQL statements.
📊 Built-in Tools You Should Know
· Execution Plan Viewer: Visualize how SQL Server runs a query—useful for performance tuning.
· SQL Server Profiler (optional install): Capture and analyze real-time SQL activity.
· Database Diagrams: Visually map out table relationships (ER-style modeling).
· Generate Scripts Wizard: Script out entire databases or specific objects.
☁️ SSMS and Azure
If you're managing cloud-based databases like Azure SQL:
· SSMS connects seamlessly via Authentication: Azure Active Directory
· Cloud-specific options like Geo-Replication, Intelligent Insights, and Scaling Tiers are just clicks away
In Chapter 4: Understanding Databases, Tables, and Indexes, we’ll dig into schema architecture, table design, and the importance of smart indexing—especially relevant to your performance tuning expertise.
Chapter 4: Understanding Databases, Tables, and Indexes
Why this chapter matters: Grasping how databases, tables, and indexes work together is essential for designing scalable, performant, and well-organized systems.
🧱 What is a Database?
A database is a container that holds all your data objects—tables, views, stored procedures, and more. In SQL Server, a single instance can host many databases.
Key elements:
· Data files (.mdf/.ndf): Store data and objects
· Log file (.ldf): Records all transactions for recovery
· Schemas: Logical containers that group related objects
📋 What are Tables?
Tables are the core data structures—rows and columns like a spreadsheet.
Each table has:
· Columns: Define data types and constraints
· Rows: Represent individual records
· Keys: Enforce uniqueness and relationships
> Example:
CREATE TABLE Customers (
 CustomerID INT PRIMARY KEY,
 Name NVARCHAR(100),
 Email VARCHAR(255) UNIQUE,
 JoinDate DATE DEFAULT GETDATE()
);
🗝️ Indexes: Accelerators for Your Queries
An index is like a book’s table of contents—it helps SQL Server find data faster without scanning every row.
Types of Indexes:
· Clustered: Sorts table data by the index key. Only one per table.
· Non-clustered: Separate structure that points to the data rows.
· Columnstore: Ideal for analytics and large read-heavy tables.
· Filtered: Indexes only a subset of rows (e.g., active records).
> 🔍 Tip: Always examine execution plans before adding indexes—you don’t want to over-index and hurt insert/update performance.
Chapter 5: Data Types and Constraints
Why this chapter matters: Choosing the right data type and enforcing the right constraints ensures your database is efficient, reliable, and easier to maintain. It's like laying a strong foundation before building your house.
🔤 Commonly Used Data Types
	Category
	Examples
	Use Case

	Numeric
	INT, BIGINT, DECIMAL, FLOAT
	For IDs, amounts, calculations

	String/Text
	VARCHAR, NVARCHAR, CHAR, TEXT
	Names, emails, descriptions

	Date/Time
	DATE, DATETIME2, TIME
	Timestamps, logging, scheduling

	Binary
	VARBINARY, IMAGE
	File storage, images

	Other
	BIT, UNIQUEIDENTIFIER, XML, JSON
	Flags, UUIDs, semi-structured data

> ✨ Pro Tip: Always prefer VARCHAR(n) over TEXT and DATETIME2 over DATETIME for precision and flexibility.
🧩 Constraints for Data Integrity
Constraints define the rules SQL Server uses to enforce valid, consistent data.
· PRIMARY KEY: Ensures each row is uniquely identifiable.
· FOREIGN KEY: Maintains referential integrity between tables.
· UNIQUE: Guarantees all values in a column are different.
· NOT NULL: Prevents blank values in a column.
· DEFAULT: Sets a standard value when none is provided.
· CHECK: Enforces custom rules, like CHECK (Age >= 0)
> 🧠 Remember: Constraints are your best allies in reducing application bugs and keeping your data honest.
🧠 Choosing the Right Data Type: Tips
· Use the smallest type that meets your needs (e.g., SMALLINT instead of INT for small ranges).
· Match data types in joins and predicates to avoid implicit conversions.
· When storing currency, use DECIMAL(19,4) for accuracy—not FLOAT.
In the next chapter—T-SQL Essentials—we’ll start writing queries that bring your database to life. From SELECT basics to joins and subqueries, we’ll gear up for hands-on querying.
Chapter 6: Querying with SELECT, INSERT, UPDATE, DELETE
Why This Matters: CRUD operations—Create, Read, Update, Delete—are the heartbeat of all SQL interactions. Mastering these basics equips you to retrieve, manipulate, and maintain your data with precision and confidence.
🔍 SELECT: Reading Data
The SELECT statement retrieves data from one or more tables.
-- Get all rows and columns
SELECT * FROM Employees;

-- Select specific columns
SELECT FirstName, LastName, HireDate FROM Employees;

-- Filtering rows
SELECT * FROM Employees WHERE Department = 'Sales';

-- Sorting and limiting results
SELECT TOP 10 * FROM Employees ORDER BY HireDate DESC;
> 🎯 Tip: Avoid SELECT * in production—only retrieve the columns you need.
🆕 INSERT: Adding New Records
-- Insert a single row
INSERT INTO Employees (FirstName, LastName, Department)
VALUES ('Randy', 'Fadler', 'Engineering');

-- Insert multiple rows
INSERT INTO Departments (DeptName, ManagerID)
VALUES
 ('IT', 101),
 ('HR', 102);
🔁 UPDATE: Changing Existing Records
-- Change department for an employee
UPDATE Employees
SET Department = 'Operations'
WHERE EmployeeID = 3;
> 🧠 Always include a WHERE clause unless you want to update all rows!
🗑️ DELETE: Removing Records
-- Delete a specific employee
DELETE FROM Employees
WHERE EmployeeID = 5;

For safety, test deletes using SELECT first:
-- Preview rows to delete
SELECT * FROM Employees WHERE EmployeeID = 5;
🚧 Safe Practices
· Wrap changes in a transaction if you’re making multiple updates:
BEGIN TRAN;
UPDATE ...;
DELETE ...;
COMMIT;
· Always back up critical data before running destructive commands.
Chapter 7: Joins, Subqueries, and Set Operators
Why this matters: Relational databases are designed to relate! This chapter is about connecting the dots—efficiently and meaningfully.
🤝 Joins: Combining Rows Across Tables
Joins let you pull data from two or more tables using a related column (often a foreign key).
🔄 Types of Joins
	Join Type
	Description

	INNER JOIN
	Returns matching rows from both tables

	LEFT JOIN
	All rows from the left table, and matches (or NULLs) from the right

	RIGHT JOIN
	All rows from the right table, and matches (or NULLs) from the left

	FULL JOIN
	All rows from both tables—matched and unmatched

	CROSS JOIN
	Cartesian product (all combinations!)

> 💡 Use INNER JOIN when you only want matching pairs. Switch to LEFT JOIN when you want to preserve unmatched rows from the left table.
Example:
SELECT e.FirstName, e.LastName, d.DeptName
FROM Employees e
INNER JOIN Departments d ON e.DeptID = d.DeptID;

🔎 Subqueries: Queries Inside Queries
Subqueries let you compute values dynamically—either in the SELECT, WHERE, or FROM clauses.
Types:
· Scalar Subquery: Returns a single value
· Correlated Subquery: Depends on values from the outer query
· Derived Table: A subquery used in the FROM clause
Example (Subquery in WHERE clause):
SELECT FirstName, LastName
FROM Employees
WHERE Salary > (
 SELECT AVG(Salary) FROM Employees
);
> 🧠 Use subqueries for "give me the value from there that I need to compare here" scenarios.
⚖️ Set Operators: Merging Results
Set operators combine the results of multiple queries.
	Operator
	Description

	UNION
	Combines results, removes duplicates

	UNION ALL
	Combines all results (including duplicates)

	INTERSECT
	Only rows common to both queries

	EXCEPT
	Rows in the first query but not the second

Example:
SELECT CustomerName FROM Customers_US
UNION
SELECT CustomerName FROM Customers_Canada;
In Chapter 8: Functions, Expressions, and CASE Logic, we’ll shape and transform data with built-in tools—perfect for creating calculated fields and conditional outputs.

Chapter 9: Stored Procedures, Views, and Triggers
🔁 Stored Procedures (SPs)
A stored procedure is a precompiled block of T-SQL code that you can execute with a single call.
Benefits:
· Encapsulation of logic
· Improved performance via execution plan reuse
· Centralized code maintenance
CREATE PROCEDURE GetHighValueOrders
 @MinAmount DECIMAL
AS
BEGIN
 SELECT OrderID, CustomerID, Amount
 FROM Orders
 WHERE Amount >= @MinAmount;
END;

-- Execute it
EXEC GetHighValueOrders @MinAmount = 500.00;

> ✨ Tip: Use parameters for flexibility, and wrap complex business logic in SPs to keep client code clean.
👁️ Views
A view is a virtual table based on the result of a SELECT query.
Benefits:
· Simplifies complex joins or filtering
· Improves security by limiting exposed columns
· Useful for abstraction and consistent querying
CREATE VIEW vw_ActiveCustomers AS
SELECT CustomerID, Name, Email
FROM Customers
WHERE IsActive = 1;
You can then query it like a table:
SELECT * FROM vw_ActiveCustomers;

> 🔍 Note: Views don't store data—they’re re-evaluated on each query. Use indexed views if persistent performance is required.

⚡ Triggers
A trigger is special stored procedure that automatically runs in response to an event (INSERT, UPDATE, or DELETE).
Common Use Cases:
· Enforcing audit trails
· Validating business rules
· Logging or notification logic
sql
CREATE TRIGGER trg_LogOrderInsert
ON Orders
AFTER INSERT
AS
BEGIN
 INSERT INTO OrderAudit (OrderID, InsertedAt)
 SELECT OrderID, GETDATE()
 FROM inserted;
END;
> 🚧 Use triggers with care! They can introduce hidden performance costs and unintended side effects.
Next up in Chapter 10, we’ll wrap this section with Transactions and Error Handling—perfect for ensuring data integrity and catching problems before they spiral.
Chapter 11: System-Versioned Temporal Tables
📌 What Are Temporal Tables?
A system-versioned temporal table automatically keeps full history of all changes to a table's data. Instead of manually tracking changes with triggers or audit tables, SQL Server does the heavy lifting.
Each versioned row includes a valid time window:
· ValidFrom (start time)
· ValidTo (end time)
> When a row is updated or deleted, SQL Server moves the old version to a history table—automatically!
🧱 Creating a Temporal Table
CREATE TABLE Department (
 DeptID INT PRIMARY KEY,
 DeptName VARCHAR(100),
 ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL,
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL,
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)
)
WITH (SYSTEM_VERSIONING = ON);
SQL Server will auto-create a matching history table like MSSQL_TemporalHistoryFor_<object_id> unless you specify your own.
🔄 Modifying an Existing Table
Already have a table? Just alter it to become temporal:
ALTER TABLE Employee
ADD ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL
 CONSTRAINT DF_ValidFrom DEFAULT SYSUTCDATETIME(),
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL
 CONSTRAINT DF_ValidTo DEFAULT '9999-12-31 23:59:59.9999999',
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo);

ALTER TABLE Employee
SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.EmployeeHistory));

🔍 Querying with Time Travel
You can query temporal tables with FOR SYSTEM_TIME to explore changes:
-- See how a row looked on June 1st
SELECT * FROM Department
FOR SYSTEM_TIME AS OF '2025-06-01'
WHERE DeptID = 2;

-- Find all past versions
SELECT * FROM Department
FOR SYSTEM_TIME ALL
WHERE DeptID = 2;

Other options:
· FROM/TO – get rows active in a date range
· BETWEEN/AND – alias for FROM/TO
· CONTAINED IN – get rows fully contained within a range
🧠 Why Use Temporal Tables?
· Auditing: Track who changed what and when
· Data recovery: Revert accidental deletes/updates
· Slowly changing dimensions: Ideal for data warehouses
· Simplified logic: No need for custom history triggers
⚠️ Best Practices
· Name your history table explicitly
· Add indexes to history tables for large datasets
· Avoid manually modifying the history table—it’s managed by the system
· Monitor growth and consider archiving old history
Chapter 12: Partitioning Strategies and Implementation
Why Partitioning Matters: As tables grow into millions—or billions—of rows, partitioning helps distribute data across manageable chunks called partitions, improving query performance, maintenance, and scalability.
🧱 What Is Table Partitioning?
Partitioning splits a large table horizontally based on the value of a column (e.g., OrderDate, RegionID, TransactionYear). Each "slice" is stored separately, yet you can still query the table as a whole.
> ⚡ Use cases: archival of old data, reporting over recent years, or sharding large transactional tables.
🗺️ Key Components of Partitioning
1. Partition Function Defines how the table is logically divided.
CREATE PARTITION FUNCTION pf_YearRange (INT)
AS RANGE LEFT FOR VALUES (2022, 2023, 2024);

2. Partition Scheme Maps partitions to physical filegroups (optional for basic usage).
CREATE PARTITION SCHEME ps_YearRange
AS PARTITION pf_YearRange
TO ([PRIMARY], [FG_2023], [FG_2024], [FG_2025]);

3. Partitioned Table Table is created on the scheme, automatically routing rows based on partitioning column.
CREATE TABLE Sales (
 SaleID INT PRIMARY KEY,
 SaleYear INT,
 Amount MONEY
) ON ps_YearRange (SaleYear);

🔍 Query Behavior
SQL Server applies partition elimination to skip scanning irrelevant partitions. Example:
SELECT * FROM Sales WHERE SaleYear = 2024;

> SQL Server touches only the 2024 partition—faster reads, smaller scans.
🧹 Maintenance Benefits
· Switch partitions out for quick archival
· Truncate by partition instead of deleting millions of rows
· Perform index rebuilds on a single partition
🧠 Best Practices and Considerations
· Choose a partition key that's frequently filtered in queries
· Monitor skew—don’t let one partition dominate the data
· Keep your partition boundaries aligned with business logic (e.g., monthly or yearly)
📚 Real-World Reference: Wide World Importers
The Wide World Importers sample includes partitioned tables that support both OLTP and real-time analytics workloads. Great sandbox to test out partitioning and query tuning patterns.
In Chapter 13, we’ll turn our focus to Dynamic SQL and Execution Plans—where performance meets flexibility!
Chapter 13: Dynamic SQL and Execution Plans
🔄 What Is Dynamic SQL?
Dynamic SQL is T-SQL code that’s constructed and executed at runtime—often as a string—allowing flexible filtering, object targeting, or automation.
✅ Use Cases:
· Building search filters based on optional inputs
· Running commands across multiple tables or databases
· Automating maintenance or code generation
Example:
DECLARE @sql NVARCHAR(MAX);
DECLARE @tableName SYSNAME = 'Orders';

SET @sql = 'SELECT * FROM ' + QUOTENAME(@tableName);
EXEC sp_executesql @sql;
> ✨ Tip: Always validate and sanitize parameters to avoid SQL injection—especially when working with user inputs.
⚙️ sp_executesql vs. EXEC
	Method
	Benefits
	Limitations

	sp_executesql
	Supports parameters, plan reuse
	Slightly more verbose

	EXEC
	Simpler syntax
	No plan reuse, no parameters

Example with parameters:
DECLARE @sql NVARCHAR(MAX), @MinAmount MONEY = 500;
SET @sql = 'SELECT * FROM Orders WHERE Amount > @amt';

EXEC sp_executesql @sql, N'@amt MONEY', @MinAmount;
🔍 Execution Plans: Reading the Roadmap
An execution plan shows how SQL Server processes a query—step by step.
Two types:
· Estimated Plan: No execution—just the blueprint.
· Actual Plan: Shows what actually happened (row counts, operators).
How to View:
· In SSMS: Click “Include Actual Execution Plan” or use Ctrl + M
· Run your query, then switch to the Execution Plan tab
🧩 Understanding Plan Components
	Icon
	Operator
	Meaning

	🔍
	Index Seek
	Efficient lookup via index

	📚
	Table Scan
	Full scan of table (may be slow!)

	🔁
	Nested Loops
	Simple row-by-row joining

	♻️
	Hash Match
	Good for large sets, but memory intensive

	🔄
	Merge Join
	Efficient for sorted inputs

> 💡 Hover over arrows to see row counts and costs. Pay attention to estimates vs. actual—big mismatches suggest outdated statistics.
🧠 Pro Tips
· Use parameterized dynamic SQL for better performance and plan reuse
· Review “Missing Index” suggestions in plans—but don’t add blindly
· Compare plans before and after tuning queries or adding indexes
· Use SET STATISTICS IO ON and SET STATISTICS TIME ON for deeper insight
In Chapter 14, we’ll explore Sequences and Identity Columns—auto-generating keys and handling gaps or concurrency.

Chapter 14: SQL Server Sequences and Identity Columns
🆔 Identity Columns
Identity columns auto-generate numeric values when rows are inserted—commonly used for primary keys.
Basic Syntax:CREATE TABLE Orders (
 OrderID INT IDENTITY(1,1) PRIMARY KEY,
 CustomerID INT,
 OrderDate DATE
);
· IDENTITY(1,1) starts at 1 and increments by 1.
· Values are automatically generated—no need to specify them during inserts.
Identity Notes:
· Use DBCC CHECKIDENT('Orders') to check or reseed.
· Gaps can occur (e.g., from rolled-back transactions).
· Only one identity column per table.
🔄 Sequences
Introduced in SQL Server 2012, sequences are independent objects that generate a series of numbers—you control when and how they're used.
Benefits Over Identity:
· Can be shared across tables
· No gaps from rollbacks (if used carefully)
· More flexible for batching and parallelism
Creating and Using a Sequence:
CREATE SEQUENCE OrderSeq
 START WITH 1000
 INCREMENT BY 5;

-- Get the next value
SELECT NEXT VALUE FOR OrderSeq;

-- Insert using the sequence
INSERT INTO Orders (OrderID, CustomerID, OrderDate)
VALUES (NEXT VALUE FOR OrderSeq, 101, '2025-06-19');

Resetting or Altering:
ALTER SEQUENCE OrderSeq RESTART WITH 500;

🤝 Choosing Between Identity and Sequence
	Feature
	Identity Column
	Sequence Object

	Tied to table
	Yes
	No (separate object)

	Gaps on rollback
	Likely
	Avoidable

	Parallel inserts
	Limited control
	Better support

	Used in multiple tables
	No
	Yes

> ✨ Use Identity for simple cases; Sequence when you need control across tables or parallel inserts.
In Chapter 15, we’ll compare Change Data Capture and Change Tracking—two different but equally powerful ways to monitor changes in your data over time.
Chapter 15: Change Data Capture vs. Change Tracking
🧭 Why Capture Changes?
Whether you're syncing with external systems, replicating changes, or auditing updates, it's crucial to know what changed and when—without rolling your own triggers or poll-based logic.
📸 Change Data Capture (CDC)
CDC records row-level changes to tracked tables in associated change tables using transaction log mining.
Key Features:
· Captures INSERT, UPDATE, and DELETE
· Shows before-and-after values for updated rows
· Stores changes in SQL-managed tables (e.g., cdc.dbo_TableName_CT)
· Uses asynchronous log scanning
· Ideal for ETL pipelines, auditing, and data replication
Enabling CDC:
EXEC sys.sp_cdc_enable_db; -- One-time for the database
EXEC sys.sp_cdc_enable_table
 @source_schema = 'dbo',
 @source_name = 'Orders',
 @role_name = NULL;
Querying Changes:
SELECT *
FROM cdc.fn_cdc_get_all_changes_dbo_Orders(
 @from_lsn, @to_lsn, 'all');
> 🧠 LSNs (Log Sequence Numbers) are used to track changes over time.
🧵 Change Tracking (CT)
CT offers a lightweight way to track which rows changed, but not how.
Key Features:
· Tracks INSERT, UPDATE, DELETE, but only row versions
· Doesn't store previous values
· Minimal overhead
· Requires consumer to track a version number (CHANGE_VERSION)
· Ideal for apps syncing changes, like mobile clients or caching layers
Enabling CT:
ALTER DATABASE YourDB SET CHANGE_TRACKING = ON
 (CHANGE_RETENTION = 2 DAYS, AUTO_CLEANUP = ON);

ALTER TABLE Orders ENABLE CHANGE_TRACKING
 WITH (TRACK_COLUMNS_UPDATED = ON);

Querying Changes:
SELECT *
FROM CHANGETABLE(CHANGES Orders, @last_sync_version) AS CT;

⚖️ Comparison Table
	Feature
	CDC
	Change Tracking

	Captures data
	Yes, full before/after
	No, only row-level change

	Query complexity
	Higher (via log + LSNs)
	Simpler

	Performance
	Medium
	High (lightweight)

	Use case
	Auditing, ETL, DW loads
	Syncing apps, lightweight change check

	Retention
	Based on cleanup jobs
	Based on retention setting

✨ Choosing the Right Tool
· Use CDC when you need full change history, including old and new values.
· Use Change Tracking when you only need to know what changed, not how.
In Chapter 16, we’ll zoom into the nitty-gritty of Indexing, including when and how to use clustered, non-clustered, and columnstore indexes for performance tuning.

Chapter 16: Indexing Deep Dive—Clustered, Non-Clustered, and Columnstore
🔍 Why Indexing Matters
Indexes allow SQL Server to locate data efficiently—without scanning every row in a table. They’re essential for performance, especially in read-heavy workloads.
> 📌 Think of indexes like the index in a book: you can quickly jump to what you need instead of flipping every page.
🧱 Clustered Index
· Defines the physical order of data in the table
· There can be only one per table
· Often set on the primary key
CREATE CLUSTERED INDEX IX_Employees_EmployeeID
ON Employees(EmployeeID);

> 🧠 The table is the index. Efficient for range queries and sorting.
🧾 Non-Clustered Index
· Separate structure from the table with pointers to rows
· You can have many non-clustered indexes per table
· Can include included columns for covering queries
CREATE NONCLUSTERED INDEX IX_Employees_DeptID
ON Employees(DeptID)
INCLUDE (FirstName, LastName);
> 💡 Use INCLUDE to avoid lookups and return all needed data from the index alone.
🧱 vs. 🧾 Comparison
	Feature
	Clustered Index
	Non-Clustered Index

	Physical data order
	Yes
	No

	Quantity per table
	1
	Many

	Great for
	Range scans, ordering
	Filtered lookups, covering

📦 Columnstore Index
Designed for analytics and warehousing, Columnstore indexes store data column by column instead of row by row.
Benefits:
· Amazing compression
· Blazing speed for aggregations over millions of rows
· Ideal for OLAP, fact tables, large scans
CREATE CLUSTERED COLUMNSTORE INDEX IX_Sales_Columnstore
ON Sales;
> 🚀 Massive performance boost for read-heavy analytics—less ideal for heavy OLTP.
🔧 Filtered Indexes
Only index a subset of rows, reducing size and overhead.
CREATE NONCLUSTERED INDEX IX_Employees_ActiveOnly
ON Employees(IsActive)
WHERE IsActive = 1;
> 🧠 Great for indexes on IsDeleted, Status = 'Active', etc.
📉 When Indexes Hurt
· Too many = higher storage, slower INSERT/UPDATE/DELETE
· Wrong indexes = unused by optimizer
· Missing stats = poor query plans
Use:
SELECT * FROM sys.dm_db_missing_index_details;

to identify opportunities—but always verify.
In Chapter 17, we’ll analyze Execution Plans and Query Tuning—perfect timing after this indexing foundation.
Chapter 17: Execution Plans and Query Tuning
🧭 What Are Execution Plans?
An execution plan is a roadmap of how SQL Server processes your query. It shows which indexes were used, join strategies, and estimated vs. actual row counts.
Types of Plans:
· Estimated Plan: Generated before running the query
· Actual Plan: Collected during execution, includes real metrics
> 📌 Use Ctrl + M in SSMS before running a query to include the actual execution plan.

🔍 Reading Execution Plans
Key elements to look for:
	Icon
	Operator
	What It Tells You

	🔍
	Index Seek
	Efficient lookup—ideal

	📚
	Table Scan
	Slow full scan—missing index or filter

	🔁
	Nested Loops
	Best for small row sets

	♻️
	Hash Match
	Efficient for large joins

	🔄
	Merge Join
	Great for pre-sorted data

> 🧠 Hover over arrows to compare “Estimated Rows” vs. “Actual Rows”. Big mismatches = outdated stats or bad estimates.
🧩 Common Tuning Techniques
1. Add Missing Indexes Use sys.dm_db_missing_index_details to discover helpful suggestions—but verify usefulness first!
2. Use Covering Indexes Add INCLUDE columns so the query can be satisfied entirely from the index.
3. Avoid Functions on Indexed Columns
WHERE YEAR(OrderDate) = 2025 -- ❌ kills index
WHERE OrderDate >= '2025-01-01' AND OrderDate < '2026-01-01' -- ✅ index-friendly

4. Update Statistics Keeps row estimates accurate:
UPDATE STATISTICS dbo.Orders;

5. Use SARGable Predicates “Search Argument Able” = SQL can use indexes
6. Simplify Joins and Subqueries Rewrite complex joins and avoid correlated subqueries in favor of joins or temp tables.
🛠️ Tools for Tuning
· SSMS Execution Plan Viewer Interactive, shows row flow and operator costs.
· Query Store Captures query history, plans, and performance stats over time.
· DMVs (Dynamic Management Views) Analyze cache, indexes, and memory grants.
Example:
SELECT TOP 5 *
FROM sys.dm_exec_query_stats
ORDER BY total_worker_time DESC;

Built-In SQL Server Tools (Already Included with Installation)
	Tool
	Purpose

	SQL Server Management Studio (SSMS)
	Central hub for query tuning, execution plans, and index management.

	Execution Plans
	Visualize query performance bottlenecks (use Actual Execution Plan in SSMS).

	Dynamic Management Views (DMVs)
	Query system views like sys.dm_exec_query_stats, sys.dm_db_index_usage_stats for performance insights.

	Database Engine Tuning Advisor (DTA)
	Analyzes workloads and recommends indexes, partitions, and stats updates.

	Query Store
	Tracks query performance over time, helps identify regressions and force plans.

	Extended Events
	Lightweight tracing for deep diagnostics (replaces SQL Profiler).

	Live Query Statistics
	See query execution in real time—great for long-running queries.

	Activity Monitor
	Quick overview of CPU, I/O, expensive queries, and blocking sessions.

	DBCC Commands
	Use DBCC SHOW_STATISTICS, DBCC FREEPROCCACHE, etc., for tuning and diagnostics.

🧰 Optional Tools You Might Want to Install
	Tool
	Description

	SQL Server Profiler
	Legacy tool for tracing events—still useful for some scenarios.

	Performance Monitor (PerfMon)
	Windows tool to track SQL Server counters like buffer cache hit ratio, page life expectancy.

	Azure Data Studio
	Lightweight alternative to SSMS with extensions for performance insights.

	Third-Party Tools
	Redgate SQL Monitor, SolarWinds DPA, and ApexSQL Plan offer advanced diagnostics and visualizations.

In Chapter 18, we’ll dig deeper into Statistics, Histograms, and Cardinality Estimation—the math behind execution plans.
Chapter 18: Statistics, Histograms, and Cardinality Estimation
🧠 Why Statistics Matter
SQL Server uses statistics to estimate row counts during query planning. These estimates impact everything from join strategies to index selection. If the stats are wrong, the plan will be too.
🔍 What Are Statistics?
Statistics are metadata that describe the distribution of values in one or more columns of a table or index.
They’re built using:
· Histograms: Bucketed value frequency maps
· Density vectors: Measure how unique the values are
· Cardinality: The expected number of rows a predicate returns
> 📌 You can view a table’s statistics with:
DBCC SHOW_STATISTICS ('Products', 'IX_Products_CategoryID');
📈 Histograms
A histogram summarizes the distribution of values in a single column—like a bar chart behind the scenes.
· Up to 200 steps (bins)
· Shows range_high_key, equal_rows, and distinct_range_rows
· Built from a sample of rows (unless FULLSCAN is specified)
> 🧠 Useful for estimating filters like WHERE Price = 9.99 or WHERE OrderDate BETWEEN '2024-01-01' AND '2024-12-31'
🔮 Cardinality Estimation (CE)
The Cardinality Estimator is the engine that predicts how many rows a query will return—based on available statistics.
Why it matters:
· Bad estimates = bad plans
· Good estimates = efficient joins, correct index choices
Example:
SELECT * FROM Orders WHERE CustomerID = 42;
If SQL estimates 1 row and gets 1,000, it might use a Nested Loop join instead of a more efficient Hash Match.

🔄 Updating Statistics
Stats can become stale due to data changes.
Options:
-- Rebuild one stat
UPDATE STATISTICS dbo.Customers;

-- Rebuild all
EXEC sp_updatestats;

You can also enable AUTO_UPDATE_STATISTICS (default) and control thresholds.
🔎 Viewing Statistics Usage
Use this DMV to find recently used stats:
SELECT *
FROM sys.dm_db_stats_properties(object_id('Orders'), stats_id)

Or explore column-level usage:
SELECT * FROM sys.stats WHERE object_id = OBJECT_ID('Orders');

⚠️ When Statistics Go Wrong
· Skewed distributions (e.g. 90% NULL, 10% active)
· Multi-column filtering with only single-column stats
· Filtered or computed columns lacking coverage
> ✨ Tip: For complex queries, consider creating filtered stats or manual stats on computed expressions*.
In Chapter 19, we’ll take all this knowledge and sharpen it into best practices for writing high-performance queries.
Chapter 19: Best Practices for Writing High-Performance Queries
🧠 1. Be Selective in SELECT
Only return the columns you need—avoid SELECT *.
-- ✅ Better
SELECT FirstName, LastName FROM Employees;

-- ❌ Avoid
SELECT * FROM Employees;
> Reduces I/O, improves index usage, and shrinks result sets.

🧩 2. Filter Early, Filter Often
Always apply WHERE clauses when possible—and push predicates down.
-- Good: filters early
SELECT * FROM Orders WHERE OrderDate >= '2024-01-01';

-- Bad: filters after joining a huge set
SELECT * FROM Orders JOIN Customers ON ... WHERE OrderDate >= ...

🧮 3. Mind Your Joins
Use the right join for the job:
· INNER JOIN for matching rows
· LEFT JOIN only when needed
· Avoid CROSS JOIN unless you want a Cartesian product
Check indexing on join keys and match data types.
📚 4. Watch for Table Scans
If your query is scanning large tables, check for:
· Missing indexes
· Non-sargable filters
· Outdated stats
Use execution plans to catch these silently expensive operations.
📉 5. Avoid Row-by-Row (RBAR) Processing
SQL Server thrives on set-based logic—not loops.
Instead of:
DECLARE cursor CURSOR FOR SELECT ...;
OPEN cursor;
FETCH NEXT FROM cursor...

Try:
UPDATE Customers
SET Status = 'Inactive'
WHERE LastLogin < '2024-01-01';
🏗️ 6. Break Down Complex Queries

Long queries with nested logic can confuse the optimizer. Consider:
· Using temp tables or CTEs
· Materializing steps instead of deeply nested subqueries
🔍 7. Leverage Covering Indexes
If you’re always filtering and selecting the same columns, build a covering index using INCLUDE.
CREATE INDEX IX_Orders_Covering
ON Orders (CustomerID)
INCLUDE (OrderDate, Amount);
🧰 8. Use Proper Data Types
Match types in joins and filters, and choose the smallest data type that meets your needs.
-- Implicit conversion slows query:
WHERE PhoneNumber = 123456789

-- Better:
WHERE PhoneNumber = '123456789'

🔄 9. Keep Stats and Indexes Fresh
Schedule regular updates:
EXEC sp_updatestats;
ALTER INDEX ALL ON Customers REBUILD;
Monitor fragmentation, stale plans, and I/O.
🧪 10. Always Test Against Real Data
Small dev tables may hide performance bottlenecks. Use representative volumes and patterns when benchmarking.
In Chapter 20, we’ll pull out the power tools—DMVs and DMFs—for advanced performance monitoring and diagnostics.
🔍 Chapter 20: Using DMVs and DMFs for Monitoring
DMV = Dynamic Management View DMF = Dynamic Management Function Together, they expose real-time server internals to help DBAs and developers monitor everything from query stats to memory usage.
🧭 Key DMV Categories
	DMV Category
	Description

	sys.dm_exec_*
	Query execution, SQL text, and plans

	sys.dm_db_*
	Per-database info—indexes, stats, storage

	sys.dm_os_*
	Operating system-level info—CPU, memory

	sys.dm_tran_*
	Transactions and locking

	sys.dm_io_virtual_file_stats
	I/O patterns per file

📈 Useful DMVs in Action
1. Top 10 Most Expensive Queries
SELECT TOP 10
 qs.total_elapsed_time / qs.execution_count AS avg_time_ms,
 qs.execution_count,
 qt.text
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt
ORDER BY avg_time_ms DESC;

> Find slow queries to target for tuning.
2. Missing Indexes
SELECT
 migs.avg_user_impact,
 mid.equality_columns,
 mid.inequality_columns,
 mid.included_columns
FROM sys.dm_db_missing_index_group_stats migs
JOIN sys.dm_db_missing_index_groups mig ON migs.group_handle = mig.index_group_handle
JOIN sys.dm_db_missing_index_details mid ON mig.index_handle = mid.index_handle
ORDER BY migs.avg_user_impact DESC;

> Find potentially useful indexes—verify before implementing!
3. Wait Statistics
SELECT TOP 10 *
FROM sys.dm_os_wait_stats
ORDER BY wait_time_ms DESC;

> Understand where SQL Server is “waiting” (e.g., I/O, locks, CPU).

4. Active Sessions and Blocking
SELECT
 session_id, status, blocking_session_id, wait_type, last_request_start_time
FROM sys.dm_exec_requests
WHERE blocking_session_id <> 0;

> Pinpoint performance bottlenecks and blocking chains.
5. Disk I/O by File
SELECT DB_NAME(database_id) AS db,
 file_id,
 io_stall,
 num_of_reads,
 num_of_writes
FROM sys.dm_io_virtual_file_stats(NULL, NULL);

> Analyze hot files and storage lag.
🔧 Pro Tips
· Filter by database using DB_ID() or DB_NAME() functions
· DMVs reset on SQL Server restart—log results if long-term trends are needed
· Wrap DMV queries into stored procedures or dashboards for reuse
In Chapter 21, we explored backups and recovery. Coming up in Chapter 22, we’ll lock down your environment with Role-Based Access and Security Best Practices.

Chapter 21: Backup, Restore, and Recovery Models
🔐 Why Backups Matter
Backups protect your data from corruption, user error, hardware failure, or catastrophic events. But not all backups (or recovery plans) are created equal.
🔄 Recovery Models Overview
The recovery model determines how much data can be recovered and what happens to the transaction log.
	Model
	Log Behavior
	Use Case

	Full
	Logs every transaction
	Point-in-time recovery

	Bulk-Logged
	Like Full, but logs minimally for bulk ops
	Efficient for big imports

	Simple
	Truncates log automatically
	Dev/test, non-critical

> 💡 Use SELECT name, recovery_model_desc FROM sys.databases; to check current settings.
💽 Backup Types
1. Full Backup
Captures the entire database.
BACKUP DATABASE WideWorldImporters
TO DISK = 'C:\Backups\WWI_Full.bak';
2. Differential Backup
Captures only changes since the last full backup.
BACKUP DATABASE WideWorldImporters
TO DISK = 'C:\Backups\WWI_Diff.bak'
WITH DIFFERENTIAL;

3. Transaction Log Backup
Allows point-in-time recovery in Full or Bulk-Logged models.
BACKUP LOG WideWorldImporters
TO DISK = 'C:\Backups\WWI_Log.trn';

♻️ Restore Scenarios
Full Restore:
RESTORE DATABASE WideWorldImporters
FROM DISK = 'C:\Backups\WWI_Full.bak'
WITH NORECOVERY;
Followed by Differential:
RESTORE DATABASE WideWorldImporters
FROM DISK = 'C:\Backups\WWI_Diff.bak'
WITH NORECOVERY;

Then Transaction Log:
RESTORE LOG WideWorldImporters
FROM DISK = 'C:\Backups\WWI_Log.trn'
WITH RECOVERY;
> 🛠️ Use WITH FILE = n if restoring from a media set with multiple backups.
🧪 Best Practices
· Automate backups using SQL Server Agent jobs.
· Store backups offsite or in the cloud (e.g., Azure Blob).
· Regularly test restores—a backup is only as good as its recovery.
· Monitor backup job success and alert on failures.
In Chapter 22, we’ll secure the database engine with Role-Based Access, Logins, and Permission Management.

Chapter 22: Security and Role-Based Access
🧱 Authentication Modes
SQL Server supports two main authentication models:
· Windows Authentication (integrated security): Trusted, uses domain credentials
· SQL Server Authentication: Uses separate login/password—use sparingly and always with strong password policies
-- Enable mixed mode (if needed) via SQL Server Configuration Manager
👥 Logins vs. Users
· Login: Authenticates you to the server (instance-level)
· User: Grants access to a specific database
-- Create login
CREATE LOGIN FadlerUser WITH PASSWORD = 'StrongP@ssword2025!';

-- Map login to a user in your database
USE YourDatabase;
CREATE USER FadlerUser FOR LOGIN FadlerUser;

🛡️ Fixed Server Roles (Instance-Level)
	Role
	Privilege Scope

	sysadmin
	Full control

	securityadmin
	Manage logins, roles

	serveradmin
	Configure server-wide settings

	diskadmin, setupadmin, etc.
	Specialized tasks

> 🧠 Use sysadmin sparingly—assign minimum required privileges!
🧩 Database Roles
SQL Server provides fixed database roles to control common access levels:
	Role
	Permissions

	db_datareader
	Can SELECT from all tables and views

	db_datawriter
	Can INSERT, UPDATE, DELETE

	db_ddladmin
	Can run DDL commands (CREATE/ALTER objects)

	db_owner
	Full control within that database

-- Add user to datareader role
ALTER ROLE db_datareader ADD MEMBER FadlerUser;

🧬 Custom Roles and Fine-Grained Permissions
You can create application roles or custom database roles to group specific privileges.
CREATE ROLE ReportingUser;
GRANT SELECT ON dbo.Sales TO ReportingUser;
ALTER ROLE ReportingUser ADD MEMBER FadlerUser;
> 🔐 Principle of least privilege: give only what’s necessary, nothing more.
🧪 Audit Tips
· Regularly audit:
SELECT * FROM sys.database_role_members;
SELECT * FROM sys.server_principals WHERE type_desc = 'SQL_LOGIN';
· Use built-in auditing or extended events for tracking login activity
· Consider enabling Contained Databases for better user management across environments
Coming up next in Chapter 23, we’ll automate repeatable tasks and maintenance with SQL Server Agent.
Chapter 23: Automating Jobs with SQL Server Agent
⚙️ What Is SQL Server Agent?
SQL Server Agent is a built-in Windows service that runs scheduled jobs, alerts, and automation scripts on your SQL Server instance.
· Supports T-SQL, SSIS, PowerShell, CmdExec, and more
· Integrated into SSMS for easy GUI setup
· Essential for daily maintenance, backups, indexing, alerts, etc.
> 🧠 Make sure the Agent service is started—check in SQL Server Configuration Manager or SSMS Object Explorer.
🧩Key Components
	Component
	Description

	Job
	A container for one or more steps

	Step
	A single task (T-SQL, PowerShell, etc.)

	Schedule
	Defines when the job runs

	Operator
	Alert contact for job success/failure

✅ Creating a Job (SSMS GUI)
1. Expand SQL Server Agent → Jobs → Right-click → New Job
2. Add a name and description
3. Add steps with T-SQL or executable actions
4. Set up a schedule (recurring, one-time, etc.)
5. Assign alerts or notifications (email, log, etc.)
💡 T-SQL Example: Create Job via Script
sql
USE msdb;
EXEC sp_add_job @job_name = 'Nightly Index Rebuild';

EXEC sp_add_jobstep
 @job_name = 'Nightly Index Rebuild',
 @step_name = 'Rebuild All Indexes',
 @subsystem = 'TSQL',
 @command = 'EXEC sp_MSforeachtable ''ALTER INDEX ALL ON ? REBUILD''';

EXEC sp_add_schedule
 @schedule_name = 'EveryMidnight',
 @freq_type = 4, -- daily
 @active_start_time = 000000; -- midnight

EXEC sp_attach_schedule
 @job_name = 'Nightly Index Rebuild',
 @schedule_name = 'EveryMidnight';

EXEC sp_add_jobserver @job_name = 'Nightly Index Rebuild';

🔔 Notifications & Alerts
Set up Database Mail and configure SQL Server Agent to notify:
· On job success/failure
· On specific error levels (e.g., severity 17+)
EXEC msdb.dbo.sp_add_notification
 @job_name = 'Nightly Index Rebuild',
 @level = 1,
 @operator_name = 'DBA_Operator',
 @notification_method = 1; -- Email

🧠 Best Practices
· Use descriptive job names and document job logic
· Log job history and step output for troubleshooting
· Monitor Agent health—configure alerts for job failures
· Store job code in source control if you’re scripting your jobs
In Chapter 24, we’ll explore Database Maintenance Plans—including backups, stats updates, and consistency checks in a GUI-friendly way.
Chapter 24: Database Maintenance Plans
🧭 What Is a Maintenance Plan?
A Maintenance Plan is a collection of tasks—like backups, index maintenance, or consistency checks—automated through SQL Server Agent. It uses a friendly GUI to help DBAs set up workflows without heavy scripting.
> 💡 Perfect for small- to mid-sized environments, or when managing multiple servers without third-party tools.
🧩 Common Tasks in a Maintenance Plan
	Task
	Purpose

	Check Database Integrity
	Verifies logical and physical structure

	Rebuild/Reorganize Indexes
	Improves performance and storage efficiency

	Update Statistics
	Keeps query plans accurate

	Back Up Database (Full/Diff/Log)
	Ensures recovery options

	Clean Up History
	Removes old job logs, backups, or text files

	Execute T-SQL Statements
	Run custom scripts

🧱 Creating a Maintenance Plan (via SSMS)
1. In SSMS → Object Explorer → Management → Maintenance Plans
2. Right-click → New Maintenance Plan
3. Use the Designer to drag & drop tasks:
· Sequence them using connectors
· Set properties like databases, schedules, thresholds
4. Use Subplans for modularity (e.g., one for backups, one for index work)
5. Review the SQL Server Agent job that gets created behind the scenes

🔄 Example: Weekly Index Maintenance Plan
· Monday, 2 AM: Check Database Integrity
· Tuesday, 3 AM: Rebuild Indexes + Update Statistics
· Wednesday, 2 AM: Full Database Backup
· Daily: Transaction Log Backup + Clean Up Old Files
🧠 Best Practices
· Use “Rebuild Index” for heavily fragmented tables, “Reorganize” for light fragmentation
· Always update statistics after index operations
· Configure backup tasks to verify integrity and optionally compress
· Set retention policies to avoid bloating your backup folders
· Schedule during off-hours to reduce user impact
In Chapter 25, we’ll turn to High Availability and Disaster Recovery (HADR) options like Always On and log shipping—key for mission-critical systems.
Chapter 25: High Availability and Disaster Recovery (HADR)
🚨 Why HADR Matters
Failures happen—disk crashes, network drops, power outages. HADR strategies ensure your SQL Server instance stays online or recovers quickly, minimizing business disruption.
🧰 Key HADR Technologies
	Feature
	Description
	Use Case

	Failover Cluster Instance (FCI)
	Shared storage cluster with automatic failover
	On-prem HA

	Always On Availability Groups
	Syncs databases across nodes with auto failover
	Enterprise HA & read scaling

	Log Shipping
	Sends log backups to secondary server for DR
	DR with delayed or manual failover

	Database Mirroring
	Legacy HA (deprecated in newer versions)
	Simple, reliable mirroring (legacy)

	Backup/Restore to Cloud
	Manual DR via cloud recovery
	Offsite recovery

⚙️ Always On Availability Groups
SQL Server’s flagship HADR solution since 2012.
Key Features:
· Multiple readable replicas
· Automatic or manual failover
· Supports encryption, DTC, and listener endpoint
-- Configured through SSMS or PowerShell
-- Requires Windows Failover Clustering and matching editions (Standard or Enterprise)
> 💡 Use Availability Groups when you need both HA and read scale-out.
🔁 Log Shipping
Moves transaction log backups from primary to standby server on a schedule.
· Easy to configure
· Supports delay for DR scenarios
· Manual failover only
sql
-- Backups copied and restored using Agent jobs
-- Good for geographically distributed DR
🧠 Choosing the Right Strategy
	Requirement
	Best Option

	Automatic failover
	Always On AG or FCI (Enterprise)

	Low budget DR
	Log Shipping

	Azure-native HADR
	Azure SQL with Geo-Replication

	Simple HA for legacy systems
	Database Mirroring (if supported)

🧪 Best Practices
· Test failover regularly!
· Monitor synchronization health
· Automate alerts for failover events and sync delays
· Validate backups as part of DR strategy
· Document runbooks for manual recovery

Chapter 27: Implementing a System-Versioned Table in Practice
🧾 Use Case: Auditing Changes to the Customers Table
We want to track how customer data (such as credit limits, contact info, or account status) evolves over time—automatically, with no need to handcraft audit triggers.
🛠️ Step 1: Choose Your Table
Let’s use Sales.Customers from WideWorldImporters. First, inspect its structure:
SELECT TOP 1 * FROM Sales.Customers;
🧱 Step 2: Add Temporal Columns
You’ll add ValidFrom and ValidTo with system-versioned configuration.
ALTER TABLE Sales.Customers
ADD ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START HIDDEN NOT NULL
 CONSTRAINT DF_Customers_ValidFrom DEFAULT SYSUTCDATETIME(),
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END HIDDEN NOT NULL
 CONSTRAINT DF_Customers_ValidTo DEFAULT '9999-12-31 23:59:59.9999999',
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo);
> 🧠 The HIDDEN keyword keeps those columns out of SELECT * queries—optional but tidy.
🔄 Step 3: Enable System Versioning
You can let SQL Server create the history table automatically or specify your own:
ALTER TABLE Sales.Customers
SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = Sales.Customers_History));
🧪 Step 4: Test It
Make a change:
UPDATE Sales.Customers
SET PhoneNumber = '888-555-0199'
WHERE CustomerID = 1;

Now query the history:
SELECT *
FROM Sales.Customers
FOR SYSTEM_TIME ALL
WHERE CustomerID = 1;

You’ll see previous versions, including what the record looked like before the update—with automatic timestamps!
🔍 Optional: Restore Past State
SELECT *
FROM Sales.Customers
FOR SYSTEM_TIME AS OF '2025-05-01T12:00:00'
WHERE CustomerID = 1;
🧠
Tips
· Add indexes to the history table for high-volume systems.
· Use FOR SYSTEM_TIME BETWEEN to detect trends or investigate user issues.
· Clean up old history with filtered deletes on the history table, if allowed.
Scenario: Auditing and Flagging High-Risk Customers
Business Need: The finance team wants to identify customers whose credit limits have decreased over time and notify account managers if the drop exceeds 25%. This helps proactively manage financial risk and customer relationships.
🧱 Step 1: Enable System-Versioning on Sales.Customers
ALTER TABLE Sales.Customers
ADD ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL
 CONSTRAINT DF_Customers_ValidFrom DEFAULT SYSUTCDATETIME(),
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL
 CONSTRAINT DF_Customers_ValidTo DEFAULT '9999-12-31 23:59:59.9999999',
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo);

ALTER TABLE Sales.Customers
SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE = Sales.Customers_History));

🔍 Step 2: Query Credit Limit Changes Over Time
WITH CreditChanges AS (
 SELECT
 CustomerID,
 CustomerName,
 ValidFrom,
 ValidTo,
 CreditLimit,
 LAG(CreditLimit) OVER (PARTITION BY CustomerID ORDER BY ValidFrom) AS PrevCreditLimit
 FROM Sales.Customers
 FOR SYSTEM_TIME ALL
)
SELECT *
FROM CreditChanges
WHERE PrevCreditLimit IS NOT NULL
 AND CreditLimit < PrevCreditLimit * 0.75;
> This identifies customers whose credit limit dropped by more than 25%.
🧠 Step 3: Create a Stored Procedure to Flag and Notify
CREATE PROCEDURE AuditHighRiskCustomers
AS
BEGIN
 SET NOCOUNT ON;

 SELECT
 c.CustomerID,
 c.CustomerName,
 c.PhoneNumber,
 c.PrimaryContactPersonID,
 c.CreditLimit,
 ch.PrevCreditLimit,
 c.ValidFrom
 INTO #HighRiskCustomers
 FROM (
 SELECT
 CustomerID,
 CustomerName,
 CreditLimit,
 ValidFrom,
 LAG(CreditLimit) OVER (PARTITION BY CustomerID ORDER BY ValidFrom) AS PrevCreditLimit
 FROM Sales.Customers
 FOR SYSTEM_TIME ALL
) ch
 JOIN Sales.Customers c ON ch.CustomerID = c.CustomerID
 WHERE ch.PrevCreditLimit IS NOT NULL
 AND ch.CreditLimit < ch.PrevCreditLimit * 0.75;

 -- Simulate notification (e.g., insert into audit log or send email)
 INSERT INTO Application.PeopleAuditLog (PersonID, Action, ActionDate)
 SELECT PrimaryContactPersonID, 'Credit limit drop >25%', SYSUTCDATETIME()
 FROM #HighRiskCustomers;

 DROP TABLE #HighRiskCustomers;
END;
⚡ Step 4: Schedule with SQL Server Agent
Create a job that runs EXEC AuditHighRiskCustomers weekly and sends an alert if any rows are inserted into the audit log.
🧪 Optional Enhancements
· Add a filtered index on Sales.Customers(CreditLimit) for faster scans
· Use Query Store to monitor performance over time
· Extend the procedure to email account managers using Database Mail
This example blends temporal querying, window functions, stored procedures, auditing, and automation—all grounded in the WWI schema.

2 | Page

image1.png
Learning
SQL Server

E5i

